sábado, 10 de abril de 2010

Variedades de Aeromodelismo

Variedades del Aeromodelismo

Existen diferentes modalidades de aeromodelismo:

  • Vuelo libre: Modelos remolcados puros, lanzados a mano o con motor a goma o explosión que planean sin control o intervención de su propietario.
  • Vuelo Circular, también llamado U-Control: Modelos que giran alrededor del piloto controlados por éste gracias a un juego de cables. Dentro de esta modalidad encontramos disciplinas del aeromodelismo tan diferentes como la acrobacia (F2B), las maquetas (F4B), las carreras (F2C), la velocidad (F2A) y el combate (F2D).
  • Radiocontrol (R/C): Es la categoría reina del aeromodelismo. En ella podemos encontrar maquetas o semimaquetas (según su grado de similitud con respecto al modelo real), veleros, motoveleros, etc., sin contar helicópteros, autogiros y cualquier engendro volador que funcione gracias a señales de radio que trasmiten órdenes a unos servos que actúan sobre las superficies de control de los modelos.
  • Interiores: Modelos específicamente diseñados para volar en recinto cerrados, entre los que se distinguen los helicópteros de radiocontrol, especialmente a batería, destacan por su bajo peso. También últimamente se han diseñado modelos a radio-control para volar en interiores, como gimnasios, bodegas de tamaño grande, etc. Hay muchas tiendas en casi todos los países que se especializan en la venta de estos artículos de este hobby.
  • FPV: Proviene del inglés "First Person View". Esta es una nueva modalidad del aeromodelismo en la cual el piloto guía al aeromodelo por medio de video inalámbrico. Las imágenes provenientes del avión son transmitidas en directo al piloto a través de gafas de realidad virtual o monitores. También hay clubes en muchas ciudades que hacen competiciones en las diferentes divisiones del aeromodelismo y ayudan mucho a los que se inician en este deporte científico.

Por su sistema de propulsión o vuelo, pueden dividirse en planeadores, veleros, de motor de gomas, motor de explosión, eléctricos o reactores.

Sistemas de propulsión

A continuación se incluye una descripción de los modos de propulsión más usuales en aeromodelismo.

Planeadores

También conocidos como veleros. Estos modelos se caracterizan por una mayor superficie alar, comparada con el resto de los métodos de propulsión, debido a que dependen exclusivamente las alas para su sustentación. La elevación se consigue gracias a las corrientes térmicas ascendentes, del mismo modo que en un planeador pilotado desde dentro. Al igual que el resto de los modelos, pueden ser de vuelo libre, o radiocontrolados.

  • Los modelos de vuelo libre suelen llevar un temporizador mecánico (también llamado destermalizador), de tal manera que transcurrido un determinado tiempo de vuelo, les hace entrar en pérdida, bajando así a tierra. De esta manera, se evita la pérdida del modelo.
  • Los modelos radiocontrolados usan servos que gobierna una emisora que presenta dos palancas con las que se dirige el modelo y controla su vuelo.

Motor a goma

Este simple método de propulsión haz de gomas que recorre el eje del fuselaje del modelo. Enganchado a la cola, y a la hélice, este haz se retuerce sobre sí mismo manualmente, o con ayuda de un motor (no necesariamente), quedando así tenso. Una vez se libera la hélice, ésta comienza a girar al destensarse las gomas, haciendo así avanzar el modelo.

Motor CO2

Una cápsula de gas a presión, dentro del fuselaje del modelo, se rellena desde el exterior con la ayuda de una bombona. Este gas a presión, liberado, ejerce una presión sobre un pistón en el cilindro del motor, haciendo que se mueva de igual modo a como funciona un motor de explosión. Este movimiento lineal del pistón se transforma en rotatorio, haciendo así girar el eje del motor, al que está enganchada la hélice. Su uso principal es el de motorizar pequeños modelos de interior sobre todo tamaño Peanut ( aproximadamente 20 cm de envergadura) Se han construido motores maqueta multicilíndricos en estrella, en línea y en V de más de 12 cilindros. Actualmente, estos motores están en desuso por la aparición de los motores eléctricos y las baterías de pequeño tamaño.

Motor de combustión interna

De igual modo a como funcionan los automóviles, un depósito de combustible alimenta un motor de uno o más cilindros. La combustión del carburante dentro del cilindro, mueve el pistón, que a su vez hace girar la hélice. Los motores más utilizados en aeromodelismo se dividen en tres categorías:

Motores Glow-Plug, de bujía incandescente o simplemente Glow

El combustible que se usa en estos motores de combustión interna de aeromodelismo suele ser una mezcla de aceite, metanol y nitrometano en diferentes porcentajes según el uso y las características del motor. La bujía en los motores más corrientes monocilíndricos de dos tiempos consiste en una resistencia de platino, la cual necesario poner al rojo vivo previo al arranque del motor. Para conseguir esto se hace pasar electricidad a través de su resistencia mediante una batería eléctrica de 1,2 ó 2V (aparato que en España viene llamado chispómetro) o un reductor de tensión acoplado a una batería de 12V llamado "Power panel". Una vez en marcha, la reacción catalítica del platino con el metanol lo mantiene incandescente lo suficiente para esperar una nueva explosión. Las cilindradas van desde 0,4 cc hasta unos 23 cc., habitualmente.

Motores Diésel

El combustible que se usa en estos motores de combustión interna de aeromodelismo suele ser una mezcla de petróleo, aceite, éter y nitrito de amilo en diferentes porcentajes según el uso y las características del motor. A diferencia de los Glow, los Diésel no disponen de ningún filamento que haya que poner al rojo, el aumento de temperatura provocado por la compresión de los gases en la cámara de combustión es suficiente para provocar su autoencendido, para ello, dicha cámara dispone de un contrapistón ajustable con un tornillo para aumentar o disminuir la compresión para conseguir un encendido y funcionamiento correctos, el par motor es muy superior al de los Glow debido sobre todo a su muy superior relación de compresión, pero, como ésta depende de las revoluciones a las que va a trabajar, acepta muy mal el funcionamiento a distintos regímenes, por lo que prácticamente no se utiliza en radiocontrol. Las cilindradas van desde unos 0,8cc hasta 3,5cc., habitualmente.

Motores de Chispa

El combustible que se usa en estos motores de combustión interna de aeromodelismo suele ser una mezcla de gasolina sin plomo normalmente 95 octanos y aceite en diferentes porcentajes según el uso y las características del motor. Son motores, que se usan generalmente a partir de 1,700mm de envergadura y mayor a 20cc de fácil puesta en marcha y de combustible mucho más baratos que los glow. Suelen ser parecidos o iguales a los de una motosierra y el carburador hace de bomba de combustible gracias a la presión que produce el cárter del motor, estos normalmente son Walbro. Los primeros utilizaban plato magnético y ruptor para conseguir la chispa, pero hoy en día, llevan CDI (encendido electrónico) que funciona con una batería aparte y la chispa se produce cuando el portahélices (con un pequeño imán) pasa por un captador y manda una señal a la CDI para que produzca la chispa, esto hace que sea mucho más fiable que un glow. La bujía es parecida a la de un coche o moto pero de tamaño más reducido. Por medio de este motor se puede emplear el chispómetro, el cual es un aparato de dos electrodos conectados entre sí.

Motores Eléctricos

Los motores eléctricos como sistema de propulsión de aeromodelos, se vienen utilizando desde hace muchos años, si bien no ha sido hasta finales del siglo pasado cuando, gracias a los avances realizados en las baterías, la verdadera viabilidad de estos motores ha alcanzado o incluso superado a los motores de combustión.

Motores con escobillas

Los motores de corriente continua, con escobillas fue el comienzo lógico de este sistema, los motores según el estándar de "MABUCHI" fueron y son aún muy utilizados, sobre todo en sus tamaños 200, 300, 400, 540 (provenientes del automodelismo) y 600. Utilizando dichos estándares, mejoraron las características utilizando imanes de "tierras raras" (Cobalto, Neodimio, etc.). En un principio, los motores se regulaban con un interruptor accionado por un servo, e incluso, una resistencia variable, con lo que se podía regular la velocidad del motor, si bien éste sistema tiene un rendimiento muy bajo, y se pierde mucha energía de las baterías en forma de calor. pronto se creó un servo que sustituía su motor por un relé que hacía la conexión. Posteriormente, la reducción de precios de los componentes electrónicos y la mejora de los equipos de radiocontrol, consiguieron que la regulación del motor se realizase por trenes de pulsos de anchura variable que, a diferencia de una variación de tensión, consigue la variación de velocidad del motor sin reducir excesivamente el par entregado. Pero, a pesar de todos estos avances y mejoras, siguen teniendo menor rendimiento que los motores "brushless" o sin escobillas.

Motores sin escobillas (Brushless)

De especial relevancia para el aeromodelismo son los nuevos motores trifásicos o "brushless" (sin escobillas) de gran rendimiento y bajo consumo. Estos motores, se construyen de dos maneras

1- "Inrunner" o de rotor interno, fueron los primeros en aplicarse al aeromodelismo, en ellos, el bobinado está en la carcasa exterior, mientras que el rotor se encuentra en el interior, son los que tienen menor diámetro y menor par pero mayor velocidad de giro, su uso principal, actualmente, está en las turbinas EDF (Electric Ducted Fan elécrticos) y la propulsión por hélice con reductoras de engranajes, especialmente los planetarios.

2- "Outrunner" o de carcasa giratoria, Toman como modelo los motrores utilizados en informática, en los que los imanes permanentes están dispuestos en un anilla alrededor de un grupo de bobinas dispuestas de forma radial, estos motores son de mayor diámetro, el par es muy superior, y, trabajan a unos regímenes que permiten la utilización directa de las hélices, incluso con diámetros bastante grandes en relación al peso del conjunto para aplicarlos a cualquier especialidad del aeromodelismo.

Para dosificar la potencia de estos motores eléctricos, se usan variadores específicos, que generan una corriente trifásica que varía en frecuencia. Estos motores son alimentados por baterías que deberían ser independientes a la alimentación eléctrica de los otros artefactos eléctricos dentro del aeromodelo como pueden ser receptor y servos, si bien casi todos los variadores de uso general disponen de un sistema de alimentación a partir de las baterías del motor, y se encarga de, al bajar la tensión de las baterías al descargarse, cortar la alimentación al motor manteniendo la del equipo de radiocontrol. Según la naturaleza de las baterías, el sistema de regulación cambia para evitar dañarlas, así un regulador para baterías de Ni-Cd o Ni-Mh corta con tensiones menores que las de LiPo Estas últimas, por su bajo peso y gran densidad de carga, son las más utilizadas habitualmente, sin embargo, en especialidades de aeromodelismo en que es necesaria una descarga muy intensa y corta, las baterías de niquel todavía tienen un campo de aplicación.

Pulsorreactor

El pulsorreactor es el motor a reacción más sencillo que se conoce, fue desarrollado por Paul Schmitd en Alemania en la década de los 20 y empleado por los nazis en las famosas bombas V1. Antes de que fuera posible el uso de las turbinas a reacción en aeromodelos a escala, el pulsorreactor fue utilizado en aeromodelismo debido a la sencillez de su fabricación y la mecánica de su funcionamiento, aún hoy es utilizado por muchos aficionados a este deporte y constituye casi una especialidad del mismo. Los modelos motorizados con este tipo de sistemas son también conocidos como pulsejet.

Motor de Turbina

Al igual que en los aviones tripulados, el motor a turbo reacción tiene el mismo funcionamiento, incluso generando un sonido muy similar. Los motores de este tipo son mucho más caros y generan mucha potencia, convirtiendo a un avión en un auténtico cohete alcanzando velocidades de hasta 400 km/h

Control de los aeromodelos

Sin control

En los llamados aeromodelos de vuelo libre, éstos deben ser autoestables, es decir, una vez lanzados, el avión no dispone de ningún sistema para controlar su destino, si bién, para evitar la pérdida del mismo, a veces disponen de un sistema de temporización para cambiar de forma radical su actitud de vuelo haciéndole descender, éstos sistemas son, habitualmente, mecánicos de relojería o tan simple como una mecha que quema un dispositivo que cambia su actitud de vuelo. Existen planeadores puros y modelos motorizados para alcanzar la altura de vuelo para posteriormente continuar planeando.

Vuelo circular

Los modelos describen una trayectoria circular alrededor del piloto situado en el centro, el cual sujeta el avión por medio de unos cables, habitualmente de acero, que en función del tamaño del avión y de la modalidad de vuelo, tienen entre 16 y 21 metros de longitud. En su forma básica, se usan dos cables que unidos al mando de profundidad permiten que el modelo realice cualquier figura que se pueda dibujar sobre la superficie de una semiesfera. en el caso de ciertas especialidades como Carrier (portaaviones) se utilizan tres cables, o en el caso de maquetas, se llegan a usar más de 5 cables para accionar los distintos elementos de la maqueta como pueden ser aceleredores, flaps, trenes retráctiles, compuertas, etc. Las diferentes especialidades oficiales están recogidas en la normativa FAI, si bien existen normativas más flexibles para competiciones no oficiales y de iniciación.

Radiocontrol

Los modelos radiocontrolados (RC) usan una emisora o radio manejada desde tierra por el piloto, y un receptor dentro de la aeronave que controla una serie de servos que transmiten mediante un mecanismo de varillas o similar movimiento a las distintas superficies de control del aeromodelo como pueden ser los alerones, flaps, aerofrenos, timón y profundidad. De esta manera, se controla su vuelo. Se controlan así los ángulos de guiñada, el cabeceo y el alabeo. En los modelos dotados con motor, si se trata de un motor de explosión, otro servo controla el acelerador, si se trata de un motor eléctrico se hace uso de un variador dando más o menos velocidad al motor. Se pueden colocar tantos servos en el avión como el tamaño del modelo y la capacidad de la emisora de radio lo permitan. Existen radios con capacidad desde los 2 canales hasta los 14, con igual o mayor número de servos. Éstos pueden utilizarse para un mayor número de operaciones dentro del avión, como ajuste de flaps, recogida y bajada del tren de aterrizaje retráctil, expulsión de humo en el avión, luces, etc.

Emisora

Es el aparato que se encarga de hacer de interfaz entre el piloto y los mandos del avión. Este aparato comúnmente tiene el nombre de radio o radiomando. El funcionamiento, de este aparato consiste en interpretar los movimientos que ejerce el usuario sobre sus "sticks", pulsadores o interruptores y convertirlos en una señal de radio, para así ser emitida al avión. Existen muchos tipos de radiomandos de diferentes marcas, pero lo normal suelen ser cuatro canales como mínimo, estos cuatro canales están controlados por unos "sticks", que son una especie de resortes que se pueden mover proporcionalmente en las cuatro direcciones. Hay radiomandos que a parte de los 4 canales básicos tienen un número superior de canales, para controlar otras funciones del avión, también hay modelos que incorporan mezclas electrónicas o diferentes utensilios informáticos que hacen más completo el vuelo. La banda de emisión legal en España se encuentra entre 35.060 y 35.200 Mhz en intervalos de 10 Khz, pero en otros países se usa también 27 o 72 Mhz. Ahora se está extendiendo los radiomandos que emiten en pcm, frente a los ppm tradicionales de hace poco, además de nuevos tipos de modulación que se están extendiendo notablemente y que trabajan en la frecuencia de 2.4GHz, recién añadida a la actual normativa de comunicaciones para aeromodelismo. Estos sistemas evitan la problemática de interferencias existente en las otras frecuencias que se da comúnmente cuando un segundo radiomando es encendido con la misma frecuencia que otro que está en uso, produciendo en el peor de los casos la pérdida de control del aeromodelo.

Receptor

Es un pequeño aparato alojado en el avión que se encarga de descodificar las señales que recibe del radiomando y convertirla en impulsos eléctricos que harán mover los correspondientes servos. Para recibir la señal correspondiente a su emisora, este tiene que tener instalado (al igual que la emisora) un cristal de cuarzo, que define la frecuencia de trabajo. Esta frecuencia tiene que ser igual tanto en el radiomando como en el receptor, para que el conjunto funcione. Obviamente, tanto el receptor como el emisor, tiene que trabajar en el mismo sistema de emisión, ya sea ppm (fm) o pcm......

Servomotores

Artículo principal: Servomotores

Comúnmente llamados servos. Estos aparatos, se encargan de producir fuerza mecánica, para mover los distintos sistemas del avión. Suelen ser de pequeño tamaño, pero pueden ejercer una gran fuerza (los estándar sobre los 3,5 kg/cm). Se componen de un pequeño motor, con sus rodamientos, y un sensor para saber la posición del servo. Podemos encontrar desde los microservos con un peso menor a los 3 gramos pero que ejercen casi un kilo de fuerza hasta grandes servos que pueden ejercer una fuerza de 25 kg/cm. Suelen trabajar con tensiones entre 4.8 y 6v, y se pueden encontrar en versión analógica o digital, siendo estos últimos generalmente más rápidos y precisos (suelen utilizarse para el control de deriva en los helicópteros si bien su uso se está extendiendo con rapidez).

Buscar este blog